Científicos de la UNAM y de la Universidad de Lancaster, Inglaterra, desarrollaron una metodología basada en redes neuronales artificiales para entender cómo asimilamos el lenguaje.
Nuestros cerebros funcionan como una gran máquina estadística que lo que hace es encontrar patrones de regularidades en el ambiente y aprender de esos patrones, explica el profesor de la Facultad de Psicología (FP) de la UNAM, Ángel Eugenio Tovar y Romo.
El académico, integrante del Laboratorio del Desarrollo Cognitivo y del Lenguaje de la FP, detalló que por ejemplo la oración “la niña juega con su mascota” tiene una secuencia frecuente en español (sujeto, verbo y predicado).
Quienes tenemos este idioma como lengua materna estamos expuestos tantas veces a oraciones con esta estructura, que nuestro cerebro se adapta a ella y procesa de manera prácticamente automática las oraciones; en cambio, puede costarnos más trabajo procesar secuencias gramaticales menos frecuentes, a las que llamó atípicas.
El conocimiento de secuencias también puede dar cuenta de cómo adquirimos vocabulario en los primeros meses y años de vida. “Los bebés aprenden la mayor parte de las palabras por vía auditiva, mediante el habla de los demás”, expuso.
En su investigación el universitario y sus colaboradores estudiaron el aprendizaje no en bebés sino en simuladores computacionales. “Proponemos que el aprendizaje de estas secuencias, denominado aprendizaje estadístico, puede ser simulado en un modelo de redes neuronales artificiales”, detalló.
Este modelo de redes neuronales artificiales cuenta con algoritmos y sistemas computacionales y, una vez obtenidos sus resultados, el experto coteja los datos con estudios en niños sanos, con autismo y síndrome de Down.
“Un aporte clave es que nuestro modelo propone que los mecanismos neuronales de procesamiento de secuencias no son específicos para el lenguaje, sino que son mecanismos generales que usamos en otras tareas como la navegación, imaginación y otros tipos de memoria”, acotó.
Tovar y Romo ahondó que el estudio con niños se divide en grupos: algunos sin patologías; otros con autismo y síndrome de Down, dos padecimientos en donde se retrasa la enseñanza del lenguaje.
Cuando el modelo estadístico genera una predicción, vamos y lo probamos en las personas, y a veces nos produce otro dato que ajustamos en el modelo, es una retroalimentación entre el modelo computacional y las personas, finalizó. PdC.